Partial *- Algebras and Their Operator Realizations
Partial *- Algebras and Their Operator Realizations
Algebras of bounded operators are familiar, either as C*-algebras or as von Neumann algebras. A first generalization is the notion of algebras of unbounded operators (O*-algebras), mostly developed by the Leipzig school and in Japan (for a review, we refer to the monographs of K. Schmdgen [1990] and A. Inoue [1998]). This volume goes one step further, by considering systematically partial *-algebras of unbounded operators (partial O*-algebras) and the underlying algebraic structure, namely, partial *-algebras. It is the first textbook on this topic. The first part is devoted to partial O*-algebras, basic properties, examples, topologies on them. The climax is the generalization to this new framework of the celebrated modular theory of Tomita-Takesaki, one of the cornerstones for the applications to statistical physics. The second part focuses on abstract partial *-algebras and their representation theory, obtaining again generalizations of familiar theorems (Radon-Nikodym, Lebesgue).
Price Comparison
Seller | Contact Seller | List Price | On Sale | Shipping | Best Promo | Final Price | Volume Discount | Financing | Availability | Seller's Page |
---|---|---|---|---|---|---|---|---|---|---|
BEST PRICE 1 Product Purchase
|
$39.99 | $39.99 |
|
$39.99 | See Site | In stock | Visit Store |