Supply Chain Disruption Management
Best Price (Coupon Required):
Buy Supply Chain Disruption Management for $107.10 at @ Link.springer.com when you apply the 10% OFF coupon at checkout.
Click “Get Coupon & Buy” to copy the code and unlock the deal.
Set a price drop alert to never miss an offer.
Single Product Purchase
Price Comparison
Seller | Contact Seller | List Price | On Sale | Shipping | Best Promo | Final Price | Volume Discount | Financing | Availability | Seller's Page |
---|---|---|---|---|---|---|---|---|---|---|
BEST PRICE 1 Product Purchase
|
|
$119.00 | $119.00 |
|
10% OFF
This deals requires coupon
|
$107.10 | See Site | In stock | Visit Store |
Product Details
This book deals with stochastic combinatorial optimization problems in supply chain disruption management, with a particular focus on management of disrupted flows in customer-driven supply chains. The problems are modeled using a scenario based stochastic mixed integer programming to address riskneutral, risk-averse and mean-risk decision-making in the presence of supply chain disruption risks. The book focuses on integrated disruption mitigation and recovery decision-making and innovative, computationally efficient multi-portfolio approach to supply chain disruption management, e.g., selection of primary and recovery supply portfolios, demand portfolios, capacity portfolios, etc. Numerous computational examples throughout the book, modeled in part on realworld supply chain disruption management problems, illustrate the material presented and provide managerial insights. Many propositions formulated in the book lead to a deep understanding of the properties of developed stochastic mixed integer programs and optimal solutions. In the computational examples, the proposed mathematical programming models are solved using an advanced algebraic modeling language such as AMPL and CPLEX, GUROBI and XPRESS solvers. The knowledge and tools provided in the book allow the reader to model and solve supply chain disruption management problems using commercially available software for mixed integer programming. Using the end-of chapter problems and exercises, the monograph can also be used as a textbook for an advanced course in supply chain risk management. After an introductory chapter, the book is then divided into six main parts. Part I addresses selection of a supply portfolio; Part II considers integrated selection of supply portfolio and scheduling; Part III looks at integrated, equitably efficient selection of supply portfolio and scheduling; Part IV examines integrated selection of primary and recovery supply and demand portfolios and production and inventory scheduling, Part V deals with selection of resilient supply portfolio in multitier supply chain networks; and Part VI addresses selection of cybersecurity safequards portfolio for disruption management of information flows in supply chains.