Topological Degree Approach to Bifurcation Problems
Best Price (Coupon Required):
Buy Topological Degree Approach to Bifurcation Problems for $36.00 at @ Link.springer.com when you apply the 10% OFF coupon at checkout.
Click “Get Coupon & Buy” to copy the code and unlock the deal.
Set a price drop alert to never miss an offer.
Single Product Purchase
Price Comparison
| Seller | Contact Seller | List Price | On Sale | Shipping | Best Promo | Final Price | Volume Discount | Financing | Availability | Seller's Page |
|---|---|---|---|---|---|---|---|---|---|---|
|
BEST PRICE 1 Product Purchase
|
|
$39.99 | $39.99 |
|
10% OFF
This deals requires coupon
|
$36.00 | See Site | In stock | Visit Store |
Product Details
1. 1 Preface Many phenomena from physics, biology, chemistry and economics are modeled by di?erential equations with parameters. When a nonlinear equation is est- lished, its behavior/dynamics should be understood. In general, it is impossible to ?nd a complete dynamics of a nonlinear di?erential equation. Hence at least, either periodic or irregular/chaotic solutions are tried to be shown. So a pr- erty of a desired solution of a nonlinear equation is given as a parameterized boundary value problem. Consequently, the task is transformed to a solvability of an abstract nonlinear equation with parameters on a certain functional space. When a family of solutions of the abstract equation is known for some para- ters, the persistence or bifurcations of solutions from that family is studied as parameters are changing. There are several approaches to handle such nonl- ear bifurcation problems. One of them is a topological degree method, which is rather powerful in cases when nonlinearities are not enough smooth. The aim of this book is to present several original bifurcation results achieved by the author using the topological degree theory. The scope of the results is rather broad from showing periodic and chaotic behavior of non-smooth mechanical systems through the existence of traveling waves for ordinary di?erential eq- tions on in?nite lattices up to study periodic oscillations of undamped abstract waveequationsonHilbertspaceswithapplicationstononlinearbeamandstring partial di?erential equations. 1.
