A Variational Approach to Lyapunov Type Inequalities
Best Price (Coupon Required):
Buy A Variational Approach to Lyapunov Type Inequalities for $36.00 at @ Link.springer.com when you apply the 10% OFF coupon at checkout.
Click “Get Coupon & Buy” to copy the code and unlock the deal.
Set a price drop alert to never miss an offer.
Single Product Purchase
Price Comparison
Seller | Contact Seller | List Price | On Sale | Shipping | Best Promo | Final Price | Volume Discount | Financing | Availability | Seller's Page |
---|---|---|---|---|---|---|---|---|---|---|
BEST PRICE 1 Product Purchase
|
|
$39.99 | $39.99 |
|
10% OFF
This deals requires coupon
|
$36.00 | See Site | In stock | Visit Store |
Product Details
This book highlights the current state of Lyapunov-type inequalities through a detailed analysis. Aimed toward researchers and students working in differential equations and those interested in the applications of stability theory and resonant systems, the book begins with an overview Lyapunovs original results and moves forward to include prevalent results obtained in the past ten years. Detailed proofs and an emphasis on basic ideas are provided for different boundary conditions for ordinary differential equations, including Neumann, Dirichlet, periodic, and antiperiodic conditions. Novel results of higher eigenvalues, systems of equations, partial differential equations as well as variational approaches are presented. To this respect, a new and unified variational point of view is introduced for the treatment of such problems and a systematic discussion of different types of boundary conditions is featured. Various problems make the study of Lyapunov-type inequalities of interest to those in pure and applied mathematics. Originating with the study of the stability properties of the Hill equation, other questions arose for instance in systems at resonance, crystallography, isoperimetric problems, Rayleigh type quotients and oscillation and intervals of disconjugacy and it lead to the study of Lyapunov-type inequalities for differential equations. This classical area of mathematics is still of great interest and remains a source of inspiration.