Abstract Parabolic Evolution Equations and ojasiewiczSimon Inequality I
Best Price (Coupon Required):
Buy Abstract Parabolic Evolution Equations and ojasiewiczSimon Inequality I for $49.50 at @ Link.springer.com when you apply the 10% OFF coupon at checkout.
Click “Get Coupon & Buy” to copy the code and unlock the deal.
Set a price drop alert to never miss an offer.
Single Product Purchase
Price Comparison
Seller | Contact Seller | List Price | On Sale | Shipping | Best Promo | Final Price | Volume Discount | Financing | Availability | Seller's Page |
---|---|---|---|---|---|---|---|---|---|---|
BEST PRICE 1 Product Purchase
|
|
$54.99 | $54.99 |
|
10% OFF
This deals requires coupon
|
$49.50 | See Site | In stock | Visit Store |
Product Details
The classical ojasiewicz gradient inequality (1963) was extended by Simon (1983) to the infinite-dimensional setting, now called the ojasiewiczSimon gradient inequality. This book presents a unified method to show asymptotic convergence of solutions to a stationary solution for abstract parabolic evolution equations of the gradient form by utilizing this ojasiewiczSimon gradient inequality. In order to apply the abstract results to a wider class of concrete nonlinear parabolic equations, the usual ojasiewiczSimon inequality is extended, which is published here for the first time. In the second version, these abstract results are applied to reactiondiffusion equations with discontinuous coefficients, reactiondiffusion systems, and epitaxial growth equations. The results are also applied to the famous chemotaxis model, i.e., the KellerSegel equations even for higher-dimensional ones.