Structural Analysis in Microelectronic and Fiber-Optic Systems
Best Price (Coupon Required):
Buy Structural Analysis in Microelectronic and Fiber-Optic Systems for $36.00 at @ Link.springer.com when you apply the 10% OFF coupon at checkout.
Click “Get Coupon & Buy” to copy the code and unlock the deal.
Set a price drop alert to never miss an offer.
Single Product Purchase
Price Comparison
Seller | Contact Seller | List Price | On Sale | Shipping | Best Promo | Final Price | Volume Discount | Financing | Availability | Seller's Page |
---|---|---|---|---|---|---|---|---|---|---|
BEST PRICE 1 Product Purchase
|
|
$39.99 | $39.99 |
|
10% OFF
This deals requires coupon
|
$36.00 | See Site | In stock | Visit Store |
Product Details
This book contains the fundamentals of a discipline, which could be called Structural Analysis in Microelectronics and Fiber Optics. It deals with mechanical behavior of microelectronic and fiber-optic systems and is written in response to the crucial need for a textbook for a first in-depth course on mechanical problems in microelectronics and fiber optics. The emphasis of this book is on electronic and optical packaging problems, and analytical modeling. This book is apparently the first attempt to select, advance, and present those methods of classical structural mechanics which have been or can be applied in various stress-strain problems encountered in "high technology" engineering and some related areas, such as materials science and solid-state physics. The following major objectives are pursued in Structural Analysis in Microelectronic and Fiber-Optic Systems: Identify structural elements typical for microelectronic and fiber-optic systems and devices, and introduce the student to the basic concepts of the mechanical behavior of microelectronic and fiber-optic struc tures, subjected to thermally induced or external loading. Select, advance, and present methods for analyzing stresses and deflections developed in microelectronic and fiber-optic structures; demonstrate the effectiveness of the methods and approaches of the classical struc tural analysis in the diverse mechanical problems of microelectronics and fiber optics; and give students of engineering, as well as practicing engineers and designers, a thorough understanding of the main princi ples involved in the analytical evaluation of the mechanical behavior of microelectronic and fiber-optic systems.