All Sides to an Oval
Best Price (Coupon Required):
Buy All Sides to an Oval for $36.00 at @ Link.springer.com when you apply the 10% OFF coupon at checkout.
Click “Get Coupon & Buy” to copy the code and unlock the deal.
Set a price drop alert to never miss an offer.
Single Product Purchase
Price Comparison
| Seller | Contact Seller | List Price | On Sale | Shipping | Best Promo | Final Price | Volume Discount | Financing | Availability | Seller's Page |
|---|---|---|---|---|---|---|---|---|---|---|
|
BEST PRICE 1 Product Purchase
|
|
$39.99 | $39.99 |
|
10% OFF
This deals requires coupon
|
$36.00 | See Site | In stock | Visit Store |
Product Details
This is the second edition of the only book dedicated to the Geometry of Polycentric Ovals. It includes problem solving constructions and mathematical formulas. For anyone interested in drawing or recognizing an oval, this book gives all the necessary construction, representation and calculation tools. More than 30 basic construction problems are solved, with references to Geogebra animation videos, plus the solution to the Frame Problem and solutions to the Stadium Problem. A chapter (co-written with Margherita Caputo) is dedicated to totally new hypotheses on the project of Borrominis oval dome of the church of San Carlo alle Quattro Fontane in Rome. Another one presents the case study of the Colosseum as an example of ovals with eight centres as well as the case study of Perronets Neuilly bridge, a half oval with eleven centres. The primary audience is: architects, graphic designers, industrial designers, architecture historians,civil engineers; moreover, the systematic way in which the book is organised could make it a companion to a textbook on descriptive geometry or on CAD. Added features in the 2nd edition include: the revised hypothesis on Borrominis project for the dome of the church of San Carlo alle Quattro Fontane in Rome, an insight into the problem of finding a single equation to represent a four-centre oval, a suggestion for a representation of a four-centre oval using Geogebra, formulas for parameters of ovals with more than 4 centres and the case study of the eleven-centre half-oval arch used to build the XVIII century Neuilly bridge in Paris.
