Adaptive Analysis of Damage and Fracture in Rock with Multiphysical Fields Coupling
Best Price (Coupon Required):
Buy Adaptive Analysis of Damage and Fracture in Rock with Multiphysical Fields Coupling for $98.10 at @ Link.springer.com when you apply the 10% OFF coupon at checkout.
Click “Get Coupon & Buy” to copy the code and unlock the deal.
Set a price drop alert to never miss an offer.
Single Product Purchase
Price Comparison
Seller | Contact Seller | List Price | On Sale | Shipping | Best Promo | Final Price | Volume Discount | Financing | Availability | Seller's Page |
---|---|---|---|---|---|---|---|---|---|---|
BEST PRICE 1 Product Purchase
|
|
$109.00 | $109.00 |
|
10% OFF
This deals requires coupon
|
$98.10 | See Site | In stock | Visit Store |
Product Details
This book mainly focuses on the adaptive analysis of damage and fracture in rock, taking into account multiphysical fields coupling (thermal, hydro, mechanical, and chemical fields). This type of coupling is a crucial aspect in practical engineering for e.g. coal mining, oil and gas exploration, and civil engineering. However, understanding the influencing mechanisms and preventing the disasters resulting from damage and fracture evolution in rocks require high-precision and reliable solutions. This book proposes adaptive numerical algorithms and simulation analysis methods that offer significant advantages in terms of accuracy and reliability. It helps readers understand these innovative methods quickly and easily. The content consists of: (1) a finite element algorithm for modeling the continuum damage evolution in rocks, (2) adaptive finite element analysis for continuum damage evolution and determining the wellbore stability of transversely isotropic rock, (3) an adaptivefinite element algorithm for damage detection in non-uniform EulerBernoulli beams with multiple cracks, using natural frequencies, (4) adaptive finite elementdiscrete element analysis for determining multistage hydrofracturing in naturally fractured reservoirs, (5) adaptive finite elementdiscrete element analysis for multistage supercritical CO2 fracturing and microseismic modeling, and (6) an adaptive finite elementdiscrete elementfinite volume algorithm for 3D multiscale propagation of hydraulic fracture networks, taking into account hydro-mechanical coupling. Given its scope, the book offers a valuable reference guide for researchers, postgraduates and undergraduates majoring in engineering mechanics, mining engineering, geotechnical engineering, and geological engineering.