Market-Conform Valuation of Options
Best Price (Coupon Required):
Buy Market-Conform Valuation of Options for $36.00 at @ Link.springer.com when you apply the 10% OFF coupon at checkout.
Click “Get Coupon & Buy” to copy the code and unlock the deal.
Set a price drop alert to never miss an offer.
Single Product Purchase
Price Comparison
Seller | Contact Seller | List Price | On Sale | Shipping | Best Promo | Final Price | Volume Discount | Financing | Availability | Seller's Page |
---|---|---|---|---|---|---|---|---|---|---|
BEST PRICE 1 Product Purchase
|
|
$39.99 | $39.99 |
|
10% OFF
This deals requires coupon
|
$36.00 | See Site | In stock | Visit Store |
Product Details
1. 1 The Area of Research In this thesis, we will investigate the 'market-conform' pricing of newly issued contingent claims. A contingent claim is a derivative whose value at any settlement date is determined by the value of one or more other underlying assets, e. g. , forwards, futures, plain-vanilla or exotic options with European or American-style exercise features. Market-conform pricing means that prices of existing actively traded securities are taken as given, and then the set of equivalent martingale measures that are consistent with the initial prices of the traded securities is derived using no-arbitrage arguments. Sometimes in the literature other expressions are used for 'market-conform' valuation - 'smile-consistent' valuation or 'fair-market' valuation - that describe the same basic idea. The seminal work by Black and Scholes (1973) (BS) and Merton (1973) mark a breakthrough in the problem of hedging and pricing contingent claims based on no-arbitrage arguments. Harrison and Kreps (1979) provide a firm mathematical foundation for the Black-Scholes- Merton analysis. They show that the absence of arbitrage is equivalent to the existence of an equivalent martingale measure. Under this mea sure the normalized security price process forms a martingale and so securities can be valued by taking expectations. If the securities market is complete, then the equivalent martingale measure and hence the price of any security are unique.