Analytic convexity and the principle of Phragmen-Lindeloff
Best Price (Coupon Required):
Buy Analytic convexity and the principle of Phragmen-Lindeloff for $22.46 at @ Link.springer.com when you apply the 10% OFF coupon at checkout.
Click “Get Coupon & Buy” to copy the code and unlock the deal.
Set a price drop alert to never miss an offer.
Single Product Purchase
Price Comparison
Seller | Contact Seller | List Price | On Sale | Shipping | Best Promo | Final Price | Volume Discount | Financing | Availability | Seller's Page |
---|---|---|---|---|---|---|---|---|---|---|
BEST PRICE 1 Product Purchase
|
|
$24.95 | $24.95 |
|
10% OFF
This deals requires coupon
|
$22.46 | See Site | In stock | Visit Store |
Product Details
We consider in Rn a differential operator P(D), P a polynomial, with constant coefficients. Let U be an open set in Rn and A(U) be the space of real analytic functions on U. We consider the equation P(D)u=f, for f in A(U) and look for a solution in A(U). Hormander proved a necessary and sufficient condition for the solution to exist in the case U is convex. From this theorem one derives the fact that if a cone W admits a Phragmen-Lindeloff principle then at each of its non-zero real points the real part of W is pure dimensional of dimension n-1. The Phragmen-Lindeloff principle is reduced to the classical one in C. In this paper we consider a general Hilbert complex of differential operators with constant coefficients in Rn and we give, for U convex, the necessary and sufficient conditions for the vanishing of the H1 groups in terms of the generalization of Phragmen-Lindeloff principle.