Artificial Neural Nets and Genetic Algorithms
Best Price (Coupon Required):
Buy Artificial Neural Nets and Genetic Algorithms for $36.00 at @ Link.springer.com when you apply the 10% OFF coupon at checkout.
Click “Get Coupon & Buy” to copy the code and unlock the deal.
Set a price drop alert to never miss an offer.
Single Product Purchase
Price Comparison
Seller | Contact Seller | List Price | On Sale | Shipping | Best Promo | Final Price | Volume Discount | Financing | Availability | Seller's Page |
---|---|---|---|---|---|---|---|---|---|---|
BEST PRICE 1 Product Purchase
|
|
$39.99 | $39.99 |
|
10% OFF
This deals requires coupon
|
$36.00 | See Site | In stock | Visit Store |
Product Details
Artificial neural networks and genetic algorithms both are areas of research which have their origins in mathematical models constructed in order to gain understanding of important natural processes. By focussing on the process models rather than the processes themselves, significant new computational techniques have evolved which have found application in a large number of diverse fields. This diversity is reflected in the topics which are the subjects of contributions to this volume. There are contributions reporting theoretical developments in the design of neural networks, and in the management of their learning. In a number of contributions, applications to speech recognition tasks, control of industrial processes as well as to credit scoring, and so on, are reflected. Regarding genetic algorithms, several methodological papers consider how genetic algorithms can be improved using an experimental approach, as well as by hybridizing with other useful techniques such as tabu search. The closely related area of classifier systems also receives a significant amount of coverage, aiming at better ways for their implementation. Further, while there are many contributions which explore ways in which genetic algorithms can be applied to real problems, nearly all involve some understanding of the context in order to apply the genetic algorithm paradigm more successfully. That this can indeed be done is evidenced by the range of applications covered in this volume.