Second-Order Equations With Nonnegative Characteristic Form
Best Price (Coupon Required):
Buy Second-Order Equations With Nonnegative Characteristic Form for $36.00 at @ Link.springer.com when you apply the 10% OFF coupon at checkout.
Click “Get Coupon & Buy” to copy the code and unlock the deal.
Set a price drop alert to never miss an offer.
Single Product Purchase
Price Comparison
Seller | Contact Seller | List Price | On Sale | Shipping | Best Promo | Final Price | Volume Discount | Financing | Availability | Seller's Page |
---|---|---|---|---|---|---|---|---|---|---|
BEST PRICE 1 Product Purchase
|
|
$39.99 | $39.99 |
|
10% OFF
This deals requires coupon
|
$36.00 | See Site | In stock | Visit Store |
Product Details
Second order equations with nonnegative characteristic form constitute a new branch of the theory of partial differential equations, having arisen within the last 20 years, and having undergone a particularly intensive development in recent years. An equation of the form (1) is termed an equation of second order with nonnegative characteristic form on a set G, kj if at each point x belonging to G we have a (xHk~j ~ 0 for any vector ~ = (~l' ... '~m)' In equation (1) it is assumed that repeated indices are summed from 1 to m, and x = (x l' , x ). Such equations are sometimes also called degenerating m elliptic equations or elliptic-parabolic equations. This class of equations includes those of elliptic and parabolic types, first order equations, ultraparabolic equations, the equations of Brownian motion, and others. The foundation of a general theory of second order equations with nonnegative characteristic form has now been established, and the purpose of this book is to pre sent this foundation. Special classes of equations of the form (1), not coinciding with the well-studied equations of elliptic or parabolic type, were investigated long ago, particularly in the paper of Picone [105], published some 60 years ago.