Reinforcement Learning for Finance
Best Price (Coupon Required):
Buy Reinforcement Learning for Finance for $27.00 at @ Link.springer.com when you apply the 10% OFF coupon at checkout.
Click “Get Coupon & Buy” to copy the code and unlock the deal.
Set a price drop alert to never miss an offer.
Single Product Purchase
Price Comparison
Seller | Contact Seller | List Price | On Sale | Shipping | Best Promo | Final Price | Volume Discount | Financing | Availability | Seller's Page |
---|---|---|---|---|---|---|---|---|---|---|
BEST PRICE 1 Product Purchase
|
|
$29.99 | $29.99 |
|
10% OFF
This deals requires coupon
|
$27.00 | See Site | In stock | Visit Store |
Product Details
This book introduces reinforcement learning with mathematical theory and practical examples from quantitative finance using the TensorFlow library. Reinforcement Learning for Finance begins by describing methods for training neural networks. Next, it discusses CNN and RNN two kinds of neural networks used as deep learning networks in reinforcement learning. Further, the book dives into reinforcement learning theory, explaining the Markov decision process, value function, policy, and policy gradients, with their mathematical formulations and learning algorithms. It covers recent reinforcement learning algorithms from double deep-Q networks to twin-delayed deep deterministic policy gradients and generative adversarial networks with examples using the TensorFlow Python library. It also serves as a quick hands-on guide to TensorFlow programming, covering concepts ranging from variables and graphs to automatic differentiation, layers, models, andloss functions. After completing this book, you will understand reinforcement learning with deep q and generative adversarial networks using the TensorFlow library. What You Will Learn Understand the fundamentals of reinforcement learning Apply reinforcement learning programming techniques to solve quantitative-finance problems Gain insight into convolutional neural networks and recurrent neural networks Understand the Markov decision process Who This Book Is For Data Scientists, Machine Learning engineers and Python programmers who want to apply reinforcement learning to solve problems.