An Introduction to the Khler-Ricci Flow
Best Price (Coupon Required):
Buy An Introduction to the Khler-Ricci Flow for $72.00 at @ Link.springer.com when you apply the 10% OFF coupon at checkout.
Click “Get Coupon & Buy” to copy the code and unlock the deal.
Set a price drop alert to never miss an offer.
Single Product Purchase
Price Comparison
Seller | Contact Seller | List Price | On Sale | Shipping | Best Promo | Final Price | Volume Discount | Financing | Availability | Seller's Page |
---|---|---|---|---|---|---|---|---|---|---|
BEST PRICE 1 Product Purchase
|
|
$79.99 | $79.99 |
|
10% OFF
This deals requires coupon
|
$72.00 | See Site | In stock | Visit Store |
Product Details
This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Khler-Ricci flow and its current state-of-the-art. While several excellent books on Khler-Einstein geometry are available, there have been no such works on the Khler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelmans celebrated proof of the Poincar conjecture. When specialized for Khler manifolds, it becomes the Khler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampre equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Khler-Ricci flow on Khler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelmans ideas: the Khler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelmans surgeries.